Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Madsen, D. John

Committee Member

Shaw, R. David

Committee Member

Dibble, D. Eric

Committee Member

Byrd Jr., D. John

Committee Member

Nelson, S. Linda

Date of Degree

5-1-2010

Document Type

Dissertation - Open Access

Degree Name

Doctor of Philosophy

College

College of Agriculture and Life Sciences

Department

Department of Plant and Soil Sciences

Abstract

Parrotfeather [Myriophyllum aquaticum (Vellozo) Verdecourt] is a non-native aquatic plant from South America that was introduced into the United States in the 1890's. Research was conducted to elucidate seasonal life history, starch allocation patterns, and key environmental factors that may affect plant growth. Environmental factors identified in field studies were used to develop a conceptual model to display relationships between growth and environmental factors. The conceptual model served as a broad-based hypothesis to parameterize growth limiting factors as it related to M. aquaticum growth. Mesocosm experiments were then conducted to test relationships depicted in the model and define the growth requirements of this species. Emergent shoot biomass, submersed shoot biomass, and sediment root biomass were related to light transmittance. Submersed shoot biomass was also related to water temperature. Stolons accounted for 40-95% of total biomass. Starch allocation was also greatest in stolons (78.1 g m-2); where up to 16.3% of total starch was stored. Low points in biomass and starch occurred from October to March. Biomass was greater when plants were grown in 30% shade, whereas plant length was greatest when plants were grown in 50% shade, with reductions observed in full sunlight. Biomass increased by 53% when nitrogen and phosphorus were added to the water column at 1.80 and 0.01 mg L-1, respectively. Myriophyllum aquaticum yield response was positively related (r2 = 0.82) to increasing nitrogen content and a critical concentration of 1.80% nitrogen and 0.20% phosphorus was identified for M. aquaticum growth. Plants grown at 0 cm water depth had 96% greater biomass than plants grown at water depths of 137 cm. Total length was 25% greater when plants were grown at water levels from 0-77 cm. Winter drawdowns reduced biomass by 99% at 4 weeks when compared to pre drawdown biomass. Summer drawdown efficacy was more rapid where biomass was reduced by 98% at 2 weeks when compared to pre drawdown biomass. Subsurface herbicide applications were not more efficacious than herbicides applied to the foliage. The foliar application of 2,4-D was the only herbicide and application method that resulted in ¡Ý90% biomass reduction of M. aquaticum.

URI

https://hdl.handle.net/11668/15286

Comments

aquatic plant management||aquatic plant ecology||inasive species||non-native plant||starch allocation||environmental factors

Share

COinS