Advisor

Toghiani, Hossein

Committee Member

Lacy, E. Thomas

Committee Member

Pittman, Jr., U. Charles

Committee Member

DuBien, K. Janice

Committee Member

Toghiani, K. Rebecca

Date of Degree

5-1-2011

Document Type

Dissertation - Open Access

Degree Name

Doctor of Philosophy

College

James Worth Bagley College of Engineering

Department

Dave C. Swalm School of Chemical Engineering

Abstract

The use of nanoreinforcements in automotive structural composites has provided promising improvements in their mechanical properties. For the first time, a robust statistical design of experiments approach was undertaken to demonstrate how key formulation and processing factors (nanofiber type, use of dispersing agent, mixing method, nanofiber weight fraction, and temperature) affected the dynamic mechanical properties of vapor-grown carbon nanofiber (VGCNF)/vinyl ester (VE) nanocomposites. Statistical response surface models were developed to predict nanocomposite storage and loss moduli as functions of significant factors. Only ~0.50 parts of nanofiber per hundred parts resin produced a roughly 20% increase in the storage modulus versus that of the neat VE at room temperature. Optimized nanocomposite properties were predicted as a function of design factors employing this methodology. For example, the use of highshear mixing (one of the mixing methods in the design) with the oxidized VGCNFs in the absence of dispersing agent or arbitrarily with pristine VGCNFs in the presence of dispersing agent was found to maximize the predicted storage modulus over the entire temperature range (30-120 °C). To study the key concept of interphase in thermoset nanocomposites, molecular dynamics simulations were performed to investigate liquid VE resin monomer interactions with the surface of a pristine VGCNF. A liquid resin having a mole ratio of styrene to bisphenol A-diglycidyl dimethacrylate monomers consistent with a 33 wt% styrene VE resin was placed in contact with both sides of pristine graphene sheets, overlapped like shingles, to represent the outer surface of a pristine VGCNF. The relative monomer concentrations were calculated in a direction progressively away from the surface of the graphene sheets. At equilibrium, the styrene/VE monomer ratio was higher in a 5 Å thick region adjacent to the nanofiber surface than in the remaining liquid volume. The elevated styrene concentration near the nanofiber surface suggests that a styrene-rich interphase region, with a lower crosslink density than the bulk matrix, could be formed upon curing. Furthermore, styrene accumulation in the immediate vicinity of the nanofiber surface might, after curing, improve the nanofiber-matrix interfacial adhesion compared to the case where the monomers were uniformly distributed throughout the matrix.

URI

https://hdl.handle.net/11668/15130

Share

COinS