Theses and Dissertations

Issuing Body

Mississippi State University


Huddleston, David H.

Committee Member

Shindala, Adnan

Committee Member

Zitta, Victor

Date of Degree


Document Type

Graduate Thesis - Open Access


Civil Engineering

Degree Name

Master of Science


College of Engineering


Department of Civil and Environmental Engineering


In the development of the watershed, hydrodynamic, and water quality models for Back Bay of Biloxi in Mississippi, the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS 2.0) - Nonpoint Source Model (NPSM) was selected as the watershed model. The hydrodynamic and water quality models DNYHYD5 and EUTRO5 were selected as the tidally influenced bay models. The watershed model simulated nonpoint source flow and pollutant loadings for all sub-watersheds, routed flow and water quality, and accounted for all major point source discharges in the Back Bay of Biloxi watershed. Time varying output from the watershed model was applied directly to the Back Bay of Biloxi model. The Bay models, in turn simulated hydrodynamics and water quality, including water depth, velocities, and fecal coliform concentrations. Both watershed and Bay models were calibrated and verified against observed data. The calibrated/verified model was used as a planning tool to assess the water quality in the Watershed and the Bay as well as for calculating Total Maximum Daily Load (TMDL) and Waste Load Allocation (WLA).