Theses and Dissertations

Issuing Body

Mississippi State University


Kim, Yun Sang

Committee Member

Street, Jason Tyler

Committee Member

Zhang, Xuefeng

Date of Degree


Document Type

Graduate Thesis - Open Access


Wood Science and Wood Products/Pulp and Paper Technology

Degree Name

Master of Science (M.S.)


College of Forest Resources


Department of Sustainable Bioproducts


Advanced oxidation of organic pollutants with TiO2 photocatalysts is limited due to the wide bandgap of TiO2, 3.2 eV, which requires ultraviolet (UV) radiation. When nanosized TiO2 is modified by carbon doping, charge recombination is inhibited and the bandgap is narrowed, allowing for efficient photodegradation under visible light. Here, we propose a flame spray pyrolysis (FSP) technique to create TiO2. The facile process of FSP has been successful in preparing highly crystalline TiO2 nanoparticles. Using the same procedure to deposit TiO2 onto biochar, the photocatalyst was doped by the carbonaceous material. The morphology, crystalline and electronic structure of the FSP TiO2 and TiO2-decorated biochar (TiO2-BC) were characterized by SEM, XRD, TGA, DLS, and diffuse reflectance UV-vis spectroscopy. Photocatalytic performance of TiO2 and TiO2-BC was investigated for model organic contaminants in an aqueous solution under UV and visible light, which will be compared to that of Degussa P25 TiO2 as a control.