Eksioglu, Sandra

Committee Member

Eksioglu, Burak

Committee Member

Petrolia, Daniel

Committee Member

Jin, Mingzhou

Date of Degree


Document Type

Dissertation - Open Access


Industrial and Systems Engineering

Degree Name

Doctor of Philosophy


Department of Industrial and Systems Engineering


The goal of this dissertation is to study optimization models that integrate location, production, inventory and transportation decisions for industrial products and apply the knowledge gained to develop supply chains for agricultural products (biomass). We estimate unit cost for the whole biomass-to-biofuels’ supply chain which is the per gallon cost for biofuels up till it reaches the markets. The unit cost estimated is the summation of location, production, inventory holding, and transportation costs. In this dissertation, we focus on building mathematical models for designing and managing the biomass-to-biofuels’ supply chains. The computational complexity of the developed models makes it advisable to use heuristic solution procedures. We develop a Lagrangean decomposition heuristic. In our heuristic, we divide the problem into two sub-problems, sub-problem 1 is a transportation problem and sub-problem 2 is a combination of a capacitated facility location and production planning problem. Subproblem 2 is further divided by commodities. The algorithm is tested for a number of different scenarios. We also develop a decision support system (DSS) for the biomass-to-biofuels’ supply chain. In our DSS, the main problem is divided into four easy-to-solve supply chain problems. These problems were determined based on our knowledge of supply chain and discussions with the experts from the biomass and biofuels’ sector. The DSS is coded using visual basic applications (VBA) for Excel and has a simple user interface which assists the user in running different types of supply chain problems and provides results in form of reports which are easy to understand.