College of Forest Resources Publications and Scholarship


Roadside right-of-ways (ROWs) undergo regular disturbances such as mowing, maintenance, wrecks, and road developments, which affect soils, groundwater, surface hydrology, and the composition of vegetation. Roadsides can provide and support an environment for diverse plant communities, but management practices have reduced native grasses, wildflowers, and woody plants. Woody plants are not desirable for traffic safety, maintenance, and visibility along road ROWs. Therefore, the objectives of this study were to investigate effects of roadside mowing frequency on native and nonnative herbaceous and woody plant vertical height coverage and native and nonnative woody stem density within plant communities along highway ROWs. We subdivided 10 research plots, systematically situated along Highway 25 in Oktibbeha and Winston counties, Mississippi, to receive 1) four or more mowings annually, 2) one mowing during fall, and 3) one mowing during fall with supplemental native wildflower seeding. We differentiated upland plots on the basis of soil drainage in upward hills. Riparian (lowland) areas were influenced by overbank inundations from streams and drainages, and were typically spanned by bridges or box culverts. We used line transects to sample vegetation. We detected 277 plant species, including native and nonnative forbs, legumes, grasses, rushes, sedges, and woody perennials (vines, shrubs, and trees). Nonnative grasses exhibited the greatest percent coverage (>90%) in all treatments. Woody plants, including vines, trees, and shrubs, comprised <8% coverage throughout the study. Percent coverage of all vegetation in different height categories differed between upland and riparian elevations (F1,59 > 4.65, P ≤ 0.04), seasons (F1,59 > 12.78, P ≤ 0.01), and between years (F1,59 > 4.91, P ≤ 0.03), but did not differ in height categories among treatments. Of the <8% coverage of woody plants, woody vines comprised most (>68%) of the stem counts, whereas 24% were trees and <8% were shrubs. Woody stem density did not differ among treatments or seasons, but between elevations (F1,59 = 3.34, P = 0.07) and during the 2-y study (F1,59 = 3.21, P = 0.08) as the trend was in the predicted direction (α = 0.05). Thickets of woody vines and low-lying trees and shrubs along the roadside ROWs did not compromise height requirements needed for roadside visibility and safety. At least one mowing per year would be needed to control tree and shrub species for visibility along roadside ROWs. We concluded that a 2-y mowing regimen was no different from mowing once annually and/or more than three times annually in the plant communities in east-central Mississippi. However, one mowing/y retained agronomic plant coverage, which is useful for erosion control and soil stabilization during roadside maintenance. Proactive management implementations can include native plantings, selective herbicide use to decrease nonnatives, continual mowing from roadside edge to 10 m, and only one mowing in late fall with an extension of the boundary to reach beyond 10 m from the roadside edge to suppress invasion of woody plants. Adopting this less-frequent mowing regimen could reduce long-term maintenance costs for Mississippi highways.


U.S. Fish and Wildlife Service

First Page


Last Page



Publication Date



College of Forest Resources


Department of Wildlife, Fisheries and Aquaculture

Research Center

Forest and Wildlife Research Center (FWRC)


native plants, nonnative plants, east-central Mississippi, woody stem density, plant communities, reduced mowing, roadside right-of-ways (ROWs)


Forest Sciences