Development of a Hybrid, Finite Element and Discrete Particle-Based Method for Computational Simulation of Blood-Endothelium Interactions in Sickle Cell Disease


Horton, Renita E.

Committee Member

Crow, Allen

Committee Member

Prabhu, Rajkumar

Committee Member

Elder, Steven H.

Date of Degree


Original embargo terms

MSU Only Indefinitely

Document Type

Graduate Thesis - Open Access


Sickle cell disease (SCD) is a severe genetic disease, affecting over 100,000 in the United States and millions worldwide. Individuals suffer from stroke, acute chest syndrome, and cardiovascular complications. Much of these associated morbidities are primarily mediated by blockages of the microvasculature, events termed vaso-occlusive crises (VOCs). Despite its prevalence and severity, the pathophysiological mechanisms behind VOCs are not well understood, and novel experimental tools and methods are needed to further this understanding. Microfluidics and computational fluid dynamics (CFD) are rapidly growing fields within biomedical research that allow for inexpensive simulation of the in vivo microenvironment prior to animal or clinical trials. This study includes the development of a CFD model capable of simulating diseased and healthy blood flow within a series of microfluidic channels. Results will be utilized to further improve the development of microfluidic systems.



This document is currently not available here.