Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Mlsna, Todd E.

Committee Member

Wipf, David O.

Committee Member

Mlsna, Debra Ann

Committee Member

Zhang, Dongmao

Committee Member

Emerson, Joseph P.

Date of Degree

1-1-2017

Document Type

Dissertation - Open Access

Abstract

Water polluted by pharmaceuticals, metals, and phosphates can be hazardous to both the environment and human health. The main aim of this study is to develop low cost, green adsorbents for removal of these pollutants from aqueous solution as a low cost alternative to activated carbon. Biochar was produced from the fast pyrolysis of Douglas fir. Magnetic biochar was prepared by magnetite (Fe3O4) precipitation onto the biochar’s surface from an aqueous Fe3+/Fe2+ solution upon NaOH treatment. Both Douglas fir and magnetic Douglas fir biochars have high uptake and adsorption capacity. Chapter I provides an overview of different biochar production techniques and modification methods. Chapter II is a study of the aqueous adsorption of pharmaceutical products, 4-nitroaniline (4NA), salicylic acid (SA), benzoic acid (BA) and phthalic acid (PA) using Douglas fir and magnetic Douglas fir biochar. The surface chemistry and composition of the magnetic biochar were examined by SEM, SEM-EDX, TEM, PZC, XPS, XRD, elemental analysis, and surface area measurements. Chapter III describes the removal of lead and cadmium using both magnetic and nonmagnetic Douglas fir biochar and Chapter IV describes the removal of phosphate from waste water. In Chapter V, this low cost adsorbent (magnetic Douglas fir biochar) was introduced into an undergraduate laboratory to expose students to water quality issues and methods of contaminant removal enhancing their understanding of these important environmental issues. This experiment introduces new and interesting approaches to water purification as well as deepens the student’s understanding of present environmental concerns regarding pharmaceutical contaminants in wastewater.

URI

https://hdl.handle.net/11668/17774

Share

COinS