Theses and Dissertations

Issuing Body

Mississippi State University


Catchot, Angus L.

Committee Member

Musser, Fred R.

Committee Member

Reynolds, Dan

Committee Member

Gore, Jeff

Committee Member

Layton, M. Blake

Date of Degree


Document Type

Dissertation - Open Access


Entomology and Plant Pathology

Degree Name

Doctor of Philosophy (Ph.D)


College of Agriculture and Life Sciences


Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology


Historically, most twospotted spider mite, Tetranychus urticae Koch, infestations occurred during the late season near maturity, but since 2005, infestations of cotton have become more common throughout the entire season. Several factors may have contributed to the increasing frequency of mites in seedling cotton, one of which is a shift in production practices from furrow applied aldicarb to neonicotinoid seed treatments for thrips control. Another factor that may impact T. urticae densities in seedling cotton is a shift from pre-plant tillage to conservation tillage or no-till cropping systems. Although the literature confirms that T. urticae can cause extensive cotton yield losses, there is a need to further refine potential late-season yield loss. From 2007 to 2009 a series of experiments were conducted to address these issues. In a series of 12 field experiments, neonicotinoid seed treatments resulted in twospotted spider mite densities greater than those in the untreated check, aldicarb, and acephate treatments. Untreated check and aldicarb treatments had the lowest mite densities. Only aldicarb controlled mites compared to the untreated check. A twospotted spider mite host survey determined that henbit, Lamium amplexicaule L., was the most consistent and preferred host. Carolina geranium, Geranium carolinianum L., cutleaf geranium, Geranium dissectum L., vetch, Vicia spp., volunteer soybean, Glycine max L., purple deadnettle, Lamium purpureum L., and spiny sowthistle, Sonchus asper (L.) Hill, were other frequently infested dicotyledonous species. Herbicide burndown timing in reduced tillage cotton production was not critical, given all weeds were killed before cotton was planted. The herbicide glufosinate was efficacious against T. urticae, providing control equal to low- to mid-rates of labeled acaricides. Including glufosinate in a herbicide burndown program was only beneficial for mite control if living weeds were present at planting. Artificial infestation experiments were adversely affected by unseasonably wet and cool weather. Infestations established at the third true leaf resulted in an average yield loss of 44.7%. It is difficult to make any conclusions about infestations made from first bloom and later because of the difficulty in establishing mite populations later in the season.