Advisor

Krishnan, Sundar R.

Committee Member

Singh, Jagdish P.

Committee Member

Srinivasan, Kalyan K.

Other Advisors or Committee Members

Wang, Chuji.||Monts, David L.

Date of Degree

1-1-2012

Document Type

Dissertation - Open Access

Major

Emphasis in Applied Physics

Degree Name

Doctor of Philosophy

College

College of Arts and Sciences

Department

Department of Physics and Astronomy

Abstract

The continuing need for greater energy security and energy independence has motivated researchers to develop new energy technologies for better energy resource management and efficient energy usage. The focus of this dissertation is the development of optical (spectroscopic) sensing methodologies for various fuels, and energy applications. A fiber-optic NIR sensing methodology was developed for predicting water content in bio-oil. The feasibility of using the designed near infrared (NIR) system for estimating water content in bio-oil was tested by applying multivariate analysis to NIR spectral data. The calibration results demonstrated that the spectral information can successfully predict the bio-oil water content (from 16% to 36%). The effect of ultraviolet (UV) light on the chemical stability of bio-oil was studied by employing laser-induced fluorescence (LIF) spectroscopy. To simulate the UV light exposure, a laser in the UV region (325 nm) was employed for bio-oil excitation. The LIF, as a signature of chemical change, was recorded from bio-oil. From this study, it was concluded that phenols present in the bio-oil show chemical instability, when exposed to UV light. A laser-induced breakdown spectroscopy (LIBS)-based optical sensor was designed, developed, and tested for detection of four important trace impurities in rocket fuel (hydrogen). The sensor can simultaneously measure the concentrations of nitrogen, argon, oxygen, and helium in hydrogen from storage tanks and supply lines. The sensor had estimated lower detection limits of 80 ppm for nitrogen, 97 ppm for argon, 10 ppm for oxygen, and 25 ppm for helium. A chemiluminescence-based spectroscopic diagnostics were performed to measure equivalence ratios in methane-air premixed flames. A partial least-squares regression (PLS-R)-based multivariate sensing methodology was investigated. It was found that the equivalence ratios predicted with the PLS-R-based multivariate calibration model matched with the experimentally measured equivalence ratios within 7 %. A comparative study was performed for equivalence ratios measurement in atmospheric premixed methane-air flames with ungated LIBS and chemiluminescence spectroscopy. It was reported that LIBS-based calibration, which carries spectroscopic information from a “point-like-volume,” provides better predictions of equivalence ratios compared to chemiluminescence-based calibration, which is essentially a “line-of-sight” measurement.

URI

https://hdl.handle.net/11668/16722

Comments

combustion||multivariate data analysis||chemiluminescence||laser-induced breakdown spectroscopy||near-infrared spectroscopy||laser-induced fluorescence spectroscopy||bio-oil

Share

COinS