Theses and Dissertations

Issuing Body

Mississippi State University


Bethel, Cindy L.

Committee Member

Carruth, Daniel W.

Committee Member

Anderson, Derek T.

Committee Member

Lim, Hyeona

Date of Degree


Document Type

Dissertation - Open Access


Computational Engineering (Program)

Degree Name

Doctor of Philosophy


James Worth Bagley College of Engineering


Computational Engineering Program


Mobility modeling is a critical step in the ground vehicle acquisition process for military vehicles. Mobility modeling tools, and in particular the NATO Reference Mobility Model (NRMM), have played a critical role in understanding the mission-level capabilities of ground vehicles. This understanding via modeling supports not only developers during early vehicle design but also decision makers in the field previewing the capabilities of ground vehicles in real-world deployments. Due to decades of field testing and operations, mobility modeling for traditional ground vehicles is well-understood; however, mobility modeling tools for evaluating autonomous mobility are sparse. Therefore, this dissertation proposes and derives a Reference Autonomous Mobility Model (RAMM). The RAMM leverages cutting-edge modeling and simulation tools to build a mobility model that serves as the mission-level mobility modeling tool currently lacking in the unmanned ground vehicle (UGV) community, thereby filling the current analysis gap in the autonomous vehicle acquisition cycle. The RAMM is built on (1) a thorough review of theories of verification and validation of simulations, (2) a novel framework for validating simulations of autonomous systems and (3) the mobility modeling framework already established by the NRMM. These building blocks brought to light the need for new, validated modeling and simulation (M&S) tools capable of simulating, at a highidelity, autonomous unmanned ground vehicle operations. This dissertation maps the derivation of the RAMM, starting with a history of verification of simulation models and a literature review of current autonomous mobility modeling methods. In light of these literature reviews, a new framework for V&V of simulations of autonomous systems is proposed, and the requirements for and derivation of the RAMM is presented. This dissertation concludes with an example application of the RAMM for route planning for autonomous UGVs. Once fully developed, the RAMM will serve as an integral part in the design, development, testing and evaluation, and ultimate fielding of autonomous UGVs for military applications.