Advisor

Skjellum, Anthony

Committee Member

Reese, Donna

Committee Member

Haupt, Tomasz

Date of Degree

5-1-2002

Document Type

Graduate Thesis - Open Access

Degree Name

Master of Science

College

James Worth Bagley College of Engineering

Department

Department of Computer Science

Abstract

Distributed real-time applications require support from the underlying middleware to meet the strict requirements for jitter, latency, and bandwidth. While most existing middleware standards such as MPI do not support Quality of Service (QoS), the MPI/RT standard supports QoS in addition to striving for high performance. This thesis presents HARE, the first known implementation of a subset of the MPI/RT 1.1 standard with time-driven QoS support. This thesis proves the following hypothesis: It is possible to achieve zero-sided communication (a model of communication characterized by the absence of any explicit per-message transfer calls by any of the participating sides) in a real-time environment using a QoS contract between an application and message-passing middleware. Furthermore, it is shown that the performance and predictability of a time-driven task using zero-sided communication is better than that of a best-effort task. The hypothesis is validated through compact MPI/RT application programs that achieve zero-sided communication.

URI

https://hdl.handle.net/11668/21071

Share

COinS