Theses and Dissertations

Issuing Body

Mississippi State University


C. LaShan Simpson

Committee Member

Tonya Stone

Committee Member

Michael Jaffe

Committee Member

Steven Elder

Date of Degree


Original embargo terms


Document Type

Graduate Thesis - Open Access


Biomedical Engineering

Degree Name

Master of Science


James Worth Bagley College of Engineering


Department of Agricultural and Biological Engineering


Cardiovascular disease is among the leading causes of death in the US. It stems from the pathological buildup of plaque within the vasculature known as vascular calcification. Medial calcification, or arteriosclerosis is the buildup of plaque within the medial layer of the arteries resulting in artery wall stiffening and reduction of blood flow. Evidence suggests that the vascular smooth muscles cells (VSMCs) that line the medial layer of the arteries, undergo a phenotypic switch to osteoblast-like cells to deposit calcium while in this pathological state. The Wnt/BETA-catenin pathway could potentially play a role in the phenotypic modulation. Inhibition of the Wnt signaling pathway could be a promising approach to combat vascular calcification. Sclerostin (SOST) has been shown to be upregulated during arteriosclerosis in a manner that is indicative of the possible therapeutic potential of the protein. Therefore, we propose to confirm the role of Wnt signaling in vascular calcification and investigate the effects of SOST treatment on vascular calcification.