Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Linhoss, John

Committee Member

Zhao, Yang

Committee Member

Chesser, Gary Daniel Jr.

Committee Member

Purswell, Joseph L.

Committee Member

To, S. D. Filip

Date of Degree

8-6-2021

Original embargo terms

Visible to MSU only for 2 years

Document Type

Dissertation - Open Access

Major

Biological Engineering

Degree Name

Doctor of Philosophy

Degree Name

Doctor of Philosophy (Ph.D)

College

James Worth Bagley College of Engineering

College

James Worth Bagley College of Engineering

Department

Department of Agricultural and Biological Engineering

Department

Department of Agricultural and Biological Engineering

Abstract

The live production sector of the poultry industry has a growing interest in robotics. Robotics have the possibility to monitor environmental conditions, assess bird welfare, and reduce labor for farm workers and owners. However, interactions of poultry with robotic systems in commercial poultry house environments is largely unknown. Therefore, the goal of this research was to assess the effect of ground and aerial robots on bird stress using avoidance distance (AD) and fleeing speed (FS) as indirect indicators. A low-cost, autonomous robot was also developed to aid in collecting data on environmental conditions in commercial broiler houses. AD and FS were measured for multiple breeds (broilers, brown hens, and white hens) at different bird ages. Poultry-robot AD was greater than poultry-human AD for both broilers and laying hens, indicating that birds tended to avoid the ground robot more than humans. However, birds did become accustomed to the ground robot as reflected by decreasing AD and FS over the trial periods. Aerial drones operated in a commercial broiler house were found to induce a larger AD and higher FS than a moveable sensor package attached to a fixed, overhead rail system. No significant difference was found in the performance of the low-cost, autonomous robot when tested on different substrates (hard tile and litter). However, some differences were found when the robot was operated at different speeds. Results from these studies have provided useful insight into the operation of ground and aerial robots in commercial poultry settings.

Share

COinS