Theses and Dissertations

Issuing Body

Mississippi State University


Bronson K. Strickland

Committee Member

Andrew J. Kouba

Committee Member

Jerrold L. Belant

Committee Member

Dean E. Beyer Jr.

Committee Member

Kevin M. Hunt

Date of Degree


Original embargo terms


Document Type

Dissertation - Open Access


Forest Resources

Degree Name

Doctor of Philosophy


College of Forest Resources


Department of Wildlife, Fisheries and Aquaculture


Identifying factors influencing kill rates or predation risk is crucial to relate predator effects on prey populations. In multi-predator landscapes, some predators may also perceive predation risk which may not only influence their distributions but also their effects on prey populations across landscapes. In the Upper Peninsula of Michigan, USA white-tailed deer (Odocoileus virginianus) exist in a multi-predator landscape which includes black bears (Ursus americanus), bobcats (Lynx rufus), coyotes (Canis latrans), and gray wolves (C. lupus). The objectives of this research were to examine spatial relationships among predators and their prey by identifying: 1) competition between wolves and coyotes, 2) factors influencing kill rates of predators, and 3) predator-specific predation risk for white-tailed deer fawns. We quantified the degree of temporal, dietary, and spatial overlap of wolves and coyotes at the population level to estimate the potential for interference competition and identify the mechanisms for how these sympatric canids coexist. We observed significant overlap across resource attributes yet the mechanisms through which wolves and coyotes coexist appear to be driven largely by how coyotes exploit differences in resource availability in heterogenous landscapes. We examined how heterogeneity in landscapes, search rate, and prey availability influence the time between kills for black bears, bobcats, coyotes, and wolves. Spatial heterogeneity in prey availability appeared to be a unifying extrinsic factor mediating time-to-kill across predators, potentially a consequence of more frequent reassessments of patch quality, which can reduce kill rates. We used white-tailed deer fawn predation sites to identify predator-specific predation risk with consideration for active predator occurrence, adult female white-tailed deer occurrence, linear features which may influence prey vulnerability, and habitat characteristics including horizontal cover and deer forage availability. Predator occurrence alone was a poor metric for predation risk. We identified differing landscapes of risk among ambush and cursorial foraging strategies which were more important for defining spatial variation in predation risk than predator density. These findings suggest that in a multi-predator landscape some predators may benefit from greater landscape heterogeneity due to availability of niche space, even though resource heterogeneity reduced predator efficacy and habitat complexity reduced predation risk for prey.