Auger Reactor Co-Pyrolysis of Southern Pine, Micronized Rubber Powder, and a Food-Grade Polymer under the Influence of Sodium Carbonate and Nickel Oxide Catalysts


Street, Jason T.

Committee Member

Hassan, El Barbary M.

Committee Member

Mlsna, Todd E.

Date of Degree


Original embargo terms

Visible to MSU only for 1 year

Document Type

Graduate Thesis - Open Access

Degree Name

Doctor of Philosophy


Bio-oil created from biomass sources do not have desirable fuel qualities. Due to their petroleum origins, plastics and micronized rubber powder (MRP) improve oil quality when co-pyrolyzed with biomass. Southern yellow pine, a food grade polymer (FGP) and micronized rubber powder (MRP) were co-pyrolyzed at various ratios in an auger reactor to improve the bio-oil. MRP proved to be the best additive, reducing acids, creating aromatic hydrocarbons, reducing water content, and increasing heating values in created bio-oil, while the FGP led to a formation of a liquid product containing a high concentration of phenolic compounds. To improve these qualities further, nickel oxide and sodium carbonate were added in-vivo to the coeeds. Nickel oxide influenced higher aromatic hydrocarbon production and reduced oxygen formation. Sodium carbonate greatly reduced the concentration of acids and water. Both catalysts improved the creation of unsaturated hydrocarbons, phenol compounds, and enhanced heating values with nickel oxide performing better than sodium carbonate.



This document is currently not available here.