Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Cinnella, Pasquale

Committee Member

Janus, Jonathan Mark

Committee Member

Warsi, Z.U.A

Date of Degree

8-2-2003

Document Type

Graduate Thesis - Open Access

Major

Aerospace Engineering

Degree Name

Master of Science

College

James Worth Bagley College of Engineering

Department

Department of Aerospace Engineering

Abstract

This study seeks to validate a recently introduced global preconditioning technique for the Euler equations. Energy and enthalpy equations are nondimensionalized by means of a reference enthalpy, resulting in increased numerical accuracy for low-speed flows. A cellbased, finite volume formulation is used, with Roe flux difference splitting and both explicit and implicit time integration schemes. A Newton-linearized iterative implicit algorithm is implemented, with Symmetric Gauss-Seidel (LU/SGS) nested sub-iterations. This choice allows one to retain time accuracy, and eliminates approximate factorization errors, which become dominant at low speed flows. The linearized flux Jacobians are evaluated by numerical differentiation. Higher-order discretization is constructed by means of the MUSCL approach. Locally one-dimensional characteristic variable boundary conditions are implemented at the farfield boundary. The preconditioned scheme is successfully applied to the following traditional test cases used as benchmarks for local preconditioning techniques: point disturbance, flow angle disturbance, and stagnation point arising from the impingement of two identical jets. The flow over a symmetric airfoil and a convergentdivergent nozzle are then simulated for arbitrary Mach numbers. The preconditioned scheme greatly enhances accuracy and convergence rate for low-speed flows (all the way down to M ≈ 10E − 4). Some preliminary tests of fully unsteady flows are also conducted.

URI

https://hdl.handle.net/11668/20287

Share

COinS