Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Thompson, David S.

Committee Member

Janus, J. Mark

Committee Member

Sescu, Adrian

Date of Degree

12-9-2016

Document Type

Graduate Thesis - Open Access

Major

Aerospace Engineering

Degree Name

Master of Science (M.S.)

College

James Worth Bagley College of Engineering

Department

Department of Aerospace Engineering

Abstract

Most aircraft accidents are caused by technical problems or weather-related issues. One cause of weather-related incidents is inlight icing, which can induce negative performance characteristics and endanger the operation of an airplane. Various researchers investigating the problem of inlight icing have proposed ice-phobic coatings as one viable solution. For this purpose, it is critical to study the behavior of a droplet impact on different types of surfaces. As an alternative to physical testing, three-dimensional numerical simulation using computational fluid dynamics offers a promising strategy for evaluating the effects of surface characteristics. Using the volume of fluid method, three simulations of high-speed droplet impact on superhydrophobic surfaces with and without micro-scale roughness elements, were generated. The simulations showed that, for the roughness configurations considered, the superhydrophobic surfaces with micro-scale roughness elements were significantly less effective at repelling the droplet than the smooth superhydrophobic surfaces.

URI

https://hdl.handle.net/11668/19069

Share

COinS