Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Hernandez, Rafael

Committee Member

George, E. Clifford

Committee Member

Zappi, E. Mark

Committee Member

White, G. Mark

Committee Member

French, W. Todd

Date of Degree

5-3-2008

Document Type

Dissertation - Open Access

Major

Chemical Engineering

Degree Name

Doctor of Philosophy (Ph.D)

College

James Worth Bagley College of Engineering

Department

Dave C. Swalm School of Chemical Engineering

Abstract

This study investigated the cracking chemistry as model lipids were reacted over a benchmark catalyst, H-ZSM-5, and two industrially used catalysts, faujasite and silica-alumina. Initial work began with a homogeneous system in which oleic acid, an unsaturated free fatty acid, and triflic acid, a Bronsted superacid, were reacted at low temperatures. Results indicated that protonation began at the double bond with cracking occurring in the direction away from the carboxylic end and producing a multiplicity of branched saturated fatty acids. Heterogeneous cracking on H-ZSM-5 at 400°C indicated that acylglycerides initially crack due to protonation occurring on the outside surface of the catalyst. Secondary cracking formed olefins (C2 – C4) which then oligomerize to form aromatic hydrocarbons that were within the range of components for gasoline. Catalysis using faujasite and silica-alumina indicated that acylglycerides require milder cracking conditions than typical crude petroleum, indicating that lower temperatures and lower catalyst to feed ratios will be required to achieve the same reactant conversions as seen in petroleum refineries.

URI

https://hdl.handle.net/11668/14992

Share

COinS