Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Thompson, Scott M.
Committee Member
Walters, Keisha B.
Committee Member
Berg, Matthew J.
Committee Member
Luck, Rogelio
Date of Degree
12-9-2016
Original embargo terms
MSU Only Indefinitely
Document Type
Dissertation - Campus Access Only
Major
Mechanical Engineering
Degree Name
Doctor of Philosophy
College
James Worth Bagley College of Engineering
Department
Department of Mechanical Engineering
Abstract
Oscillating heat pipes (OHPs) have been actively investigated since their inception due to their ability to manage high heat/heat fluxes. The OHP is a passive, wickless, two-phase heat transfer device that relies on pressure driven fluid oscillations within a hermetically-sealed serpentine channel structure. The cyclic phase-change heat transfer drives additional sensible heat transfer, and this combination causes OHPs to have high effective thermal conductivities. Many strides have been made, through both experimentation and modeling, to refine the design and implementation of OHPs. However, the main objective in OHP research has been to better understand the thermodynamic and fluid mechanic phenomena so as to enhance OHPs' thermal performance. The current work presents methods for using OHP in thermal-to-electric energy harvesting, which would allow for ‘dual-purpose’ OHP applications in which thermal management can be combined with work output. Energy harvesting occurred when a portion of the thermally-driven fluidic motion was used to generate a voltage either by electromagnetic induction or by a piezoelectric transducer imbedded in an OHP tube. For the induction approach, two methods were used to create the time-varying magnetic field required for induction. In the first, a ferrofluid was used as the OHP working fluid. Because the magnetic dipoles of the nanoparticles are randomly aligned naturally, two static, external ‘bias’ magnets were required to create a uniform magnetic field to align the particle dipoles for a non-zero magnetic flux change through a coaxial solenoid. The second method used a small rare-earth magnet confined inside a set length of an OHP channel that had a coaxial solenoid. As the OHP working fluid moved inside the harvesting channel, a portion of the fluid's momentum was transferred to the magnet, causing it to oscillate. For the piezoelectric approach, a narrow piezoelectric transducer was placed in a bow-shaped configuration along the inside of an OHP channel. Passing fluid would deflect the piezo creating a potential difference across its leads, which protruded out of the channel walls. All three of these methods successfully produced a voltage while retaining the excellent thermal performance synonymous with OHPs.
URI
https://hdl.handle.net/11668/18722
Recommended Citation
Monroe, John Gabriel, "Energy Harvesting by Oscillating Heat Pipes" (2016). Theses and Dissertations. 1876.
https://scholarsjunction.msstate.edu/td/1876