Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Prasad, Saurabh
Committee Member
Fowler, James
Committee Member
Baca, Julie
Committee Member
Miller, Len T.
Date of Degree
4-30-2011
Document Type
Dissertation - Open Access
Major
Electrical and Computer Engineering
Degree Name
Doctor of Philosophy
College
James Worth Bagley College of Engineering
Department
Department of Electrical and Computer Engineering
Abstract
In this work, we apply a nonlinear mixture autoregressive (MixAR) model to supplant the Gaussian mixture model for speaker verification. MixAR is a statistical model that is a probabilistically weighted combination of components, each of which is an autoregressive filter in addition to a mean. The probabilistic mixing and the datadependent weights are responsible for the nonlinear nature of the model. Our experiments with synthetic as well as real speech data from standard speech corpora show that MixAR model outperforms GMM, especially under unseen noisy conditions. Moreover, MixAR did not require delta features and used 2.5x fewer parameters to achieve comparable or better performance as that of GMM using static as well as delta features. Also, MixAR suffered less from overitting issues than GMM when training data was sparse. However, MixAR performance deteriorated more quickly than that of GMM when evaluation data duration was reduced. This could pose limitations on the required minimum amount of evaluation data when using MixAR model for speaker verification.
URI
https://hdl.handle.net/11668/17275
Recommended Citation
Srinivasan, Sundararajan, "A Nonlinear Mixture Autoregressive Model For Speaker Verification" (2011). Theses and Dissertations. 213.
https://scholarsjunction.msstate.edu/td/213