Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Newman, James C., Jr.

Committee Member

Sullivan, Warsi Rani

Committee Member

Lacy, Thomas E.

Date of Degree

5-4-2018

Document Type

Graduate Thesis - Open Access

Major

Aerospace Engineering

Degree Name

Master of Science (M.S.)

College

James Worth Bagley College of Engineering

Department

Department of Aerospace Engineering

Abstract

Surface-crack configurations are among the most important crack problems in the aerospace industry. The residual strength of a surface-cracked component is complicated by three-dimensional variation of the stress-intensity factor around the crack front and plastic deformations, which vary from plane stress at the free boundary, to nearly plane-strain behavior in the interior. In 1973, a two-parameter fracture criterion (TPFC) was developed to analyze fracture behavior of surface-crack configurations. Estimates were made around the crack front for fracture initiation—the critical parametric angle. Recently, NASA developed the Tool for Analysis of Surface Cracks (TASC) software that predicts critical location. This thesis is the application of the TPFC with the TASC critical angles using an equation developed from the TASC software. The TPFC was applied to three materials: a brittle titanium alloy, a ductile titanium alloy, and a ductile 301 stainless steel. The TPFC with the TASC critical angles correlated fracture behaviors well.

URI

https://hdl.handle.net/11668/16992

Share

COinS