Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Lacy, Thomas E.

Committee Member

Pittman, Charles U., Jr.

Committee Member

Olsen, Gregory D.

Committee Member

Kundu, Santanu

Date of Degree

12-8-2017

Document Type

Graduate Thesis - Open Access

Major

Aerospace Engineering

Degree Name

Master of Science (M.S.)

College

James Worth Bagley College of Engineering

Department

Department of Aerospace Engineering

Abstract

With the growing threat of orbital debris impacts to space structures, the development of space shielding concepts has been a critical research topic. In this study, numerical simulations of the hypervelocity impact response of stacked aluminum 6061-T6 sheets were performed to assess the effects of layering on penetration resistance. This work was initially motivated by set of experimental tests where a stack of four aluminum sheets of equal thickness was observed to have a higher hypervelocity ballistic resistance than a monolithic aluminum sheet with the same total thickness. A set of smoothed particle hydrodynamic simulations predicted a 40% increase in the ballistic limit for a 6-layer target compared to a monolithic sheet. In addition, the effect of variable sheet thickness and sheet ordering on the impact resistance was investigated, while still maintaining a constant overall thickness. A set of thin layers in front of a thick layer generally lead to a higher predicted ballistic limit than the inverse configuration. This work demonstrates an increase in the performance of advanced space shielding structures associated with multi-layering. This suggests that it may be possible to dramatically improve the performance of such structures by tailoring the material properties, interfaces, and layering concepts.

URI

https://hdl.handle.net/11668/19486

Share

COinS