Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Philip, Thomas

Committee Member

Singh, J. P.

Committee Member

Chu, Yul

Date of Degree

8-2-2003

Document Type

Graduate Thesis - Open Access

Major

Computer Engineering

Degree Name

Master of Science

College

James Worth Bagley College of Engineering

Department

Department of Electrical and Computer Engineering

Abstract

Laser-induced breakdown spectroscopy (LIBS) is an advanced data analysis technique for spectral analysis based on the direct measurement of the spectrum of optical emission from a laser-induced plasma. Assignment of different atomic and ionic lines, which are signatures of a particular element, is the basis of a qualitative identification of the species present in plasma. The relative intensities of these atomic and ionic lines can be used for the quantitative determination of the corresponding elements present in different samples. Calibration curve based on absolute intensity is the statistical method of determining concentrations of elements in different samples. Since we need an exact knowledge of the sample composition to build the proper calibration curve, this method has some limitations in the case of samples of unknown composition. The current research is to investigate the usefulness of ANN for the determination of the element concentrations from spectral data. From the study it is shown that neural networks predict elemental concentrations that are at least as good as the results obtained from traditional analysis. Also by automating the analysis process, we have achieved a vast saving in the time required for the data analysis.

URI

https://hdl.handle.net/11668/19793

Share

COinS