Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

King, Roger L.

Committee Member

Younan, Nicholas H.

Committee Member

Lawrence, Gary W.

Date of Degree

12-9-2011

Document Type

Graduate Thesis - Open Access

Major

Electrical Engineering

Degree Name

Master of Science

College

James Worth Bagley College of Engineering

Department

Department of Electrical and Computer Engineering

Abstract

Rotylenchulus reniformis is a nematode species affecting the cotton crop and quickly spreading throughout the southeastern United States. Effective use of nematicides at a variable rate is the only economic counter measure. It requires the intraield variable nematode population, which in turn depends on the collection of soil samples from the field and analyzing them in the laboratory. This process is economically prohibitive. Hence estimating the nematode infestation on the cotton crop using remote sensing and machine learning techniques which are cost and time effective is the motivation for this study. In the current research, the concept of multi-temporal remote sensing has been implemented in order to design a robust and generalized Nematode detection regression model. Finally, a user friendly web-service is created which is gives trustworthy results for the given input data and thereby reducing the nematode infestation in the crop and their expenses on nematicides.

URI

https://hdl.handle.net/11668/17063

Comments

Rotylenchulus reniformis||Support Vector Regression||Kernel Principal Component Analysis

Share

COinS