Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Rais-Rohani, Masoud
Committee Member
Lacy, Thomas E.
Committee Member
Motoyama, Keiichi
Date of Degree
8-17-2013
Document Type
Graduate Thesis - Open Access
Major
Aerospace Engineering
Degree Name
Master of Science
College
James Worth Bagley College of Engineering
Department
Department of Aerospace Engineering
Abstract
A computationally efficient multilevel decomposition and optimization framework is developed for application to automotive structures. A full scale finite element (FE) model of a passenger car along with a dummy and occupant restraint system (ORS) is used to analyze crashworthiness and occupant safety criteria in two crash scenarios. The vehicle and ORS models are incorporated into a decomposed multilevel framework and optimized with mass and occupant injury criteria as objectives. A surrogate modeling technique is used to approximate the computationally expensive nonlinear FE responses. A multilevel target matching optimization problem is formulated to obtain a design satisfying system level performance targets. A balance is sought between crashworthiness and structural rigidity while minimizing overall mass of the vehicle. Two separate design problems involving crash and crash+vibration are considered. A major finding of this study is that, it is possible to achieve greater weight savings by including dummy-based responses in optimization problem.
URI
https://hdl.handle.net/11668/20245
Recommended Citation
Gandikota, Imtiaz Shareef, "Multilevel Design Optimization of Automotive Structures Using Dummy- and Vehicle-Based Responses" (2013). Theses and Dissertations. 3228.
https://scholarsjunction.msstate.edu/td/3228
Comments
crashworthiness||optimization||surrogate models||occupant restraint system