Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Thompson, David S.
Committee Member
Bridges, David H.
Committee Member
Cinnella, Pasquale
Date of Degree
8-7-2004
Original embargo terms
MSU Only Indefinitely
Document Type
Graduate Thesis - Campus Access Only
Major
Aerospace Engineering
Degree Name
Master of Science
College
James Worth Bagley College of Engineering
Department
Department of Aerospace Engineering
Abstract
A computational investigation was performed to assess the effectiveness of Detached-Eddy Simulation (DES) as a tool for predicting icing effects. The AVUS code was employed to compute solutions for an iced wing configuration using DES and steady-state Reynolds Averaged Navier-Stokes (RANS) equation methodologies. The model wing was an extruded GLC305/944-ice shape section with a rectangular planform. Unstructured grids were generated using VGRID/GRIDTOOL. The one-equation Spalart-Allmaras turbulence model was used for all steady state RANS and DES computations. The numerical results were evaluated by comparison with experimental data. RANS solutions significantly under-predicted the lift and drag even after mesh refinement. The time-averaged DES computations showed some improvement in lift and drag coefficients, when compared to experimental data near stall at a 6 deg angle of attack. No significant improvement was observed at lower angles of attack. The DES computations were determined to be valid, since significant changes in the flow field were not observed after both mesh refinement and time step refinement.
URI
https://hdl.handle.net/11668/20331
Recommended Citation
Mogili, Prasad, "RANS and DES Computations for a Three-Dimensional Wing with ICE Accretion" (2004). Theses and Dissertations. 3715.
https://scholarsjunction.msstate.edu/td/3715
Comments
DES||Iced aircraft wing||RANS