Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Mlsna, Todd E.

Committee Member

Wipf, David O.

Committee Member

Mlsna, Debra Ann

Date of Degree

8-7-2020

Original embargo terms

Visible to MSU only for 2 years

Document Type

Graduate Thesis - Campus Access Only

Major

Chemistry

Degree Name

Master of Science

College

College of Arts and Sciences

Department

Department of Chemistry

Abstract

Molybdenum (Mo) is a naturally occurring trace element that is present in drinking water mostly in the molybdate (MoO42-) form in well water. Recently, the EPA deemed Mo as a potential contaminant because exposure can lead to health effects such as gout, hyperuricemia, and lung cancer. In this work, we have assessed the sorptive removal of Mo using Douglas fir biochar (DFBC) and its chemically-coprecipitated iron oxide analogue (DFMBC). Adsorption was studied varying the batch sorption conditions; pH, equilibrium time (5 min-24 h), initial Mo concentrations (2.5-1000 mg/L), temperatures (5, 25, and 40 °C) and equilibrium method. Langmuir capacities for DFBC and DFMBC (at pH 3, 2 h equilibrium) were in 359.3-487.9 mg/g and 288.3-571.9 mg/g range, respectively. Adsorbents and Mo-laden adsorbents were characterized by elemental analysis, BET, PZC, SEM, TEM, EDS, XRD, and XPS. These data suggest that DFBC and DFMBC can be potential candidates for Mo sorption.

URI

https://hdl.handle.net/11668/18015

Comments

Douglas fir biochar||Water treatment||Adsorption||Molybdenum||Douglas fir magnetic biochar

Share

COinS