Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Fernando, Sandun

Committee Member

To, S. D. Filip

Committee Member

Bricka, R. Mark

Committee Member

Steele, Philip H.

Committee Member

Srinivasan, Radhakrishnan

Date of Degree

5-3-2008

Document Type

Dissertation - Open Access

Major

Biological Engineering

Degree Name

Doctor of Philosophy

College

James Worth Bagley College of Engineering

Department

Department of Agricultural and Biological Engineering

Abstract

With the increase in production of biodiesel, a glut of glycerol has resulted in the world market. Glycerol, once a valuable chemical, has become a recalcitrant byproduct. It is also a potential renewable feedstock for hydrogen production. This study is focused on hydrogen production from glycerol steam reforming. During the initial stage, effect of process variables, such as system pressure (1-5 atm), temperature (327 – 727 oC), and water/glycerol molar ratio of (1:1-9:1) on hydrogen yield was investigated using a thermodynamic analysis. The equilibrium concentrations of different compounds were calculated by the method of Gibbs free energy minimization. The study revealed that the best conditions for producing hydrogen is at temperature > 627 oC, atmospheric pressure, and water/glycerol molar ratio (WGMR) 9:1. As a part of catalysts screening, 14 catalysts were prepared on monoliths and tested for their activity. Effects of those catalysts on hydrogen selectivity and glycerol conversion in temperatures ranging from 600-900 oC were discussed. Ni/Al2O3 and Rh/CeO2/Al2O3 were found to be the best performing catalysts based on hydrogen selectivity and glycerol conversion under the conditions investigated in this study. Also, the effect of WGMR, metal loading, and feed flow rate (FFR) were analyzed for the two best performing catalysts. Subsequently, effect of CeO2, MgO, and TiO2 supported Ni catalysts on hydrogen production from glycerol was studied. Effects of reaction temperature, FFR, and WGMR on hydrogen selectivity and glycerol conversion were also analyzed. Ni/CeO2 was found to be the best performing catalyst when compared to Ni/MgO and Ni/TiO2 under the experimental conditions investigated. The activation energy of glycerol reforming reaction was found to be 103 kJ/mol, and the reaction order with respect to glycerol was 0.23 over Ni/CeO2 catalysts based on the power law.

URI

https://hdl.handle.net/11668/14931

Comments

steam reforming||hydrogen||glycerol||catalyst

Share

COinS