Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Prabhu, RajKumar
Committee Member
Williams, Lakiesha
Committee Member
Rhee, Hongjoo
Committee Member
Horstemeyer, Mark
Date of Degree
12-8-2017
Document Type
Graduate Thesis - Open Access
Major
Biological Engineering
Degree Name
Master of Science
College
James Worth Bagley College of Engineering
Department
Department of Agricultural and Biological Engineering
Abstract
In this study, structure-property relationships in the ironclad beetle (Zopherus nodulosus haldemani) exoskeleton are quantified to develop novel bio-inspired impact resistance technologies. The hierarchical structure of this exoskeleton was observed at various length scales for both the ironclad beetle pronotum and elytron. The exocuticle and endocuticle layers provide the bulk of the structural integrity and consist of chitiniber planes arranged in a Bouligand structure. The pronotum consists of a layered structure, while elytron consists of an extra layer with “tunnel-like” voids running along the anteroposterior axis along with smaller interconnecting “tunnel-like” voids in the lateral plane. Energy dispersive X-ray diffraction revealed the existence of minerals such as calcium carbonate, iron oxide, zinc oxide, and manganese oxide. We assert that the strength of this exoskeleton could be attributed to its overall thickness, the epicuticle layer thickness, the existence of various minerals embedded in the exoskeleton, and its structural hierarchy. The thickness of the exoskeleton correlates to a higher number of chitiniber planes to increase fracture toughness, while the increased thickness of the epicuticle prevents hydration of the chitiniber planes. In previous studies, the existence of minerals in the exoskeleton has been shown to create a tougher material compared to non-mineralized exoskeletons.
URI
https://hdl.handle.net/11668/18623
Recommended Citation
Nguyen, Vina Le, "Structure-Property Relations of the Exoskeleton of the Ironclad Beetle (Zopherus Nodulosus Haldemani)" (2017). Theses and Dissertations. 4094.
https://scholarsjunction.msstate.edu/td/4094
Comments
bio-inspired design||biomaterial||mechanical properties||microstructure||beetle exoskeleton||microstructure||mechanical properties||biomaterial||bio-inspired designbeetle exoskeleton