Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Reddy, K. Raja
Committee Member
Macoon, Bisoondat
Committee Member
Phillips, J. Mike
Committee Member
Shankle, Mark W.
Committee Member
Arancibia, Ramon A.
Date of Degree
5-17-2014
Document Type
Dissertation - Open Access
Major
Agronomy
Degree Name
Doctor of Philosophy
College
College of Agriculture and Life Sciences
Department
Department of Plant and Soil Sciences
Abstract
Temperature and soil moisture (SM) are the two main environmental factors affecting sweetpotato growth and yield. Quantitative functional algorithms of plant growth and developmental processes under a wide range of above factors are needed for developing tools for modeling. Four experiments were conducted to quantify early and late season SM and temperature effects on sweetpotato growth, development, and physiology. In experiment I, effects of five SM levels were evaluated in a greenhouse using cultivars, Beauregard and Evangeline. Experiment II was conducted to evaluate late-season SM effects with four evapotranspiration (ET) based irrigation. In experiment III, five temperatures were imposed at early season (0-59 days after transplanting (DAT)). Late season temperature effects were evaluated with four day/night temperatures from 17 to 91 DAT, in experiment IV. Experiments II, III, and IV were conducted in soil plant atmosphere research facility using Beauregard. Growth, developmental, and physiological parameters were measured. Rate of storage root (SR) development of both cultivars showed a quadratic decline with decreasing SM. Soil moisture optima for SR initiation were 0.168 and 0.199 m3 m-3, equivalent to 63 and 75% field capacity (FC), for cultivars Beauregard and Evangeline, respectively. Shoot biomass declined more rapidly than root with declining SM. Results revealed that, maintaining SM closer to FC during early season is beneficial for early development of root and shoot. Storage root biomass declined quadratically with declining irrigation. The optimum irrigation was 72% of ET and less biomass was partitioned to SRs above that level. Early season temperature study revealed, SR conversion efficiency increased quadratically and reached optimum at 23.9°C with increasing temperature. Maximum rate of SR initiation was reached at 29.5°C in 16.7 d. Biomass partitioned to roots declined linearly with increasing temperature. The SR production efficiency declined from 0.43 to 0.08 g SR kg-1 total weight, and dropped by 81% relative to optimum temperature. The SR fresh weight at high temperature declined 99% relative to optimum temperature. High temperature during mid- and late-seasons partitioned more biomass to shoots, less to roots lowering SR yield. The functional algorithms developed are vital to make management decisions and to develop crop models.
URI
https://hdl.handle.net/11668/18191
Recommended Citation
Gajanayake, Karande Gajanayake Mudiyanselage Chandana Preethi Bandara, "Temperature and Soil Moisture Effects on Growth, Development, Physiology, Storage Root Initiation, and Biomass Yield in Sweetpotato" (2014). Theses and Dissertations. 4229.
https://scholarsjunction.msstate.edu/td/4229
Comments
temperature||storage roots||sweet potato||soil moisture