Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Cinnella, Pasquale

Committee Member

Marucm, David

Committee Member

Thompson, David

Committee Member

Blades, Eric

Committee Member

Remotigue, Mike

Date of Degree

8-7-2010

Document Type

Dissertation - Open Access

Major

Aerospace Engineering

Degree Name

Doctor of Philosophy

College

James Worth Bagley College of Engineering

Department

Department of Aerospace Engineering

Abstract

Computational analysis and design has become a fundamental part of product research, development, and manufacture in aerospace, automotive, and other industries. In general the success of the specific application depends heavily on the accuracy and consistency of the computational model used. The aim of this work is to reduce the time needed to prepare geometry for mesh generation. This will be accomplished by developing tools that semi-automatically repair discrete data. Providing a level of automation to the process of repairing large, complex problems in discrete data will significantly accelerate the grid generation process. The developed algorithms are meant to offer semi-automated solutions to complicated geometrical problems—specifically discrete mesh intersections and isolated boundaries. The intersection-repair strategy presented here focuses on repairing the intersection in-place as opposed to re-discretizing the intersecting geometries. Combining robust, efficient methods of detecting intersections and then repairing intersecting geometries in-place produces a significant improvement over techniques used in current literature. The result of this intersection process is a non-manifold, non-intersecting geometry that is free of duplicate and degenerate geometry. Results are presented showing the accuracy and consistency of the intersection repair tool. Isolated boundaries are a type of gap that current research does not address directly. They are defined by discrete boundary edges that are unable to be paired with nearby discrete boundary edges in order to fill the existing gap. In this research the method of repair seeks to fill the gap by extruding the isolated boundary along a defined vector so that it is topologically adjacent to a nearby surface. The outcome of the repair process is that the isolated boundaries no longer exist because the gap has been filled. Results are presented showing the precision of the edge projection and the advantage of edge splitting in the repair of isolated boundaries.

URI

https://hdl.handle.net/11668/15480

Share

COinS