Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Horstemeyer, Mark F.
Committee Member
Rhee, Hongjoo
Committee Member
El Kadiri, Haitham
Committee Member
Doude, Haley R.
Date of Degree
5-4-2018
Document Type
Dissertation - Open Access
Major
Mechanical Engineering
Degree Name
Doctor of Philosophy
College
James Worth Bagley College of Engineering
Department
Department of Mechanical Engineering
Abstract
In this study, we quantified the Chemistry-Process-Structure-Property (CPSP) relations of a Ti-6Al-4V/TiB functionally graded material to assess its ability to withstand large deformations in a high throughput manner. The functionally graded Ti-6Al-4V/TiB alloy was created by using a Laser Engineered Net Shaping (LENS) process. A complex thermal history arose during the LENS process and thus induced a multiscale hierarchy of structures that in turn affected the mechanical properties. Here, we quantified the functionally graded chemical composition; functionally graded TiB particle size, number density, nearest neighbor distance, and particle fraction; grain size gradient; porosity gradient. In concert with these multiscale structures, we quantified the associated functionally graded elastic moduli and overall stress-strain behavior of eight materials with differing amounts of titanium, vanadium, aluminum, and boron with just one experiment under compression using digital image correlation techniques. We then corroborated our experimental stress behavior with independent hardening experiments. This paper joins not only the Process-Structure-Property (PSP) relations, but couples the different chemistries in an efficient manner to effectively create the CPSP relationships for analyzing titanium, aluminum, vanadium, and boron together. Since this methodology admits the CPSP coupling, the development of new alloys can be solved by using an inverse method. Finally, this experimental data now lays down the gauntlet for modeling the sequential CPSP relationships.
URI
https://hdl.handle.net/11668/21161
Recommended Citation
Seely, Denver W., "The Process-Structure-Property Relationships of a Laser Engineered Net Shaping (LENS) Titanium-Aluminum-Vanadium Alloy that is Functionally Graded with Boron" (2018). Theses and Dissertations. 4597.
https://scholarsjunction.msstate.edu/td/4597