Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Warnock, James N.

Committee Member

Liao, Jun

Committee Member

Elder, Steven H.

Committee Member

Crow, Allen

Date of Degree

12-15-2012

Original embargo terms

MSU Only Indefinitely

Document Type

Graduate Thesis - Campus Access Only

Major

Biomedical Engineering

Degree Name

Master of Science

College

James Worth Bagley College of Engineering

Department

Department of Agricultural and Biological Engineering

Abstract

Tissue engineering aims to develop viable tissue constructs that mimic native tissues by seeding cells onto a biodegradable scaffold. In this study, it was hypothesized that dynamic fluid flow coupled with FGF-2 treatment would enhance in vitro recellularization of porcine aortic valves. Decellularized aortic valve leaflets were seeded with porcine valvular interstitial cells in a rotating wall bioreactor, a rocker plate and static conditions. To determine the optimal condition for recellularization, the scaffolds were recellularized with and without the addition of FGF-2 (n=3). Follow-up experiments were performed to analyze the molecular mechanisms involved in the FGF-2 activation pathway. The results demonstrated high cell density and high protein levels and gene expression under dynamic conditions especially in the rotating wall bioreactor recellularized scaffolds. In conclusion,the rotating wall bioreactor conditions might have stimulated the interstitial cells to produce more FGF-2 and increase FGFR-2 expression and TGF-Beta/SMAD signaling pathway plays a vital role in this.

URI

https://hdl.handle.net/11668/19149

Share

COinS