Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
To, Filip S. D.
Committee Member
Wills, Robert W.
Committee Member
Carr, Russell
Committee Member
Baumgartner, Wes A.
Date of Degree
11-25-2020
Original embargo terms
Visible to MSU only for 2 years
Document Type
Dissertation - Open Access
Major
Biomedical Engineering
Degree Name
Doctor of Philosophy
College
James Worth Bagley College of Engineering
Department
Department of Agricultural and Biological Engineering
Abstract
Subconcussive impacts have become a growing concern particularly with respect to contact sports. It is believed that minimal head impacts can cause cerebral perturbations that initiate an immune response creating a window of vulnerability. Evidence suggests that additional head insults sustained during this window of vulnerability elicit an exaggerated inflammatory response and exacerbate cognitive deficits. Therefore, determining the lower limits of systematic perturbation resulting from low-level impacts is of critical importance in expanding our understanding of cerebral vulnerability and recovery. However, the vast majority of experimental investigations of subconcussion fail to model single impact events and instead focus on cumulative insults. Additionally, these animal models employ impact magnitudes used to model mild Traumatic Brain Injury. The present investigation aimed to address this gap in knowledge through the utilization of a pneumatically controlled, closed-head, blunt impact device capable of producing repeatable, defined, subconcussive head impacts within a rat model. Thermography was used as a noninvasive measure of inflammation and system perturbations with respect to local (head) and global (thorax and abdomen) temperature changes. Cognitive function was assessed using an Open Field Test and Novel Object Recognition test. Neuroinflammation was measured by assessment of GFAP and iba-1 within the hippocampus and corpus callosum. To investigate the tolerance and the persistence of cerebral vulnerability, measurement outcomes were assessed at six timepoints of recovery, 0, 0.5, 1, 4, 7, and 14 days. Thermal disturbances were detected directly after impact, followed by an apparent recovery, 0.5- and 1-day post-impact. A latent temperature increase was observed after 4- and 7-days of recovery coinciding with decreased risk-avoidance behaviors, a modest upregulation of iba-1, and a marked downregulation of GFAP. Short-term memory deficits became apparent after 7-days of recovery. A decrease in locomotor activity and an upregulation of GFAP was observed concomitant to a persistent decrease in risk-avoidance despite thermal, short-term memory, and iba-1 measurements recovery 14-days post-impact. Overall, these results indicate that low magnitude subconcussive impacts can produce latent thermal, behavioral, and histological disturbances uncharacteristic for a head injury model suggestive of a biomechanical threshold of altered pathodynamics that fail to fully recover after 14 days.
URI
https://hdl.handle.net/11668/20874
Recommended Citation
Virkus, Sonja Anne, "Thermographic, behavioral, and histological inflammatory analysis of a subconcussive, closed-head, blunt impact rodent model" (2020). Theses and Dissertations. 4713.
https://scholarsjunction.msstate.edu/td/4713