Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Kluss, Joni
Committee Member
Karimi-Ghartemani, Masoud
Committee Member
Abdelwahed, Sherif
Committee Member
Fu, Yong
Date of Degree
5-4-2018
Document Type
Graduate Thesis - Open Access
Major
Electrical and Computer Engineering
Degree Name
Doctor of Philosophy
College
James Worth Bagley College of Engineering
Department
Department of Electrical and Computer Engineering
Abstract
Shipboard Power Systems (SPS) play a significant role in next-generation Navy fleets. With the increasing power demand from propulsion loads, ship service loads, weaponry systems and mission systems, a stable and reliable SPS is critical to support different aspects of ship operation. It also becomes the technology-enabler to improve ship economy, efficiency, reliability, and survivability. Moreover, it is important to improve the reliability and robustness of the SPS while working under different operating conditions to ensure safe and satisfactory operation of the system. This dissertation aims to introduce novel and effective approaches to respond to different types of possible faults in the SPS. According to the type and duration, the possible faults in the Medium Voltage DC (MVDC) SPS have been divided into two main categories: transient and permanent faults. First, in order to manage permanent faults in MVDC SPS, a novel real-time reconfiguration strategy has been proposed. Onboard postault reconfiguration aims to ensure the maximum power/service delivery to the system loads following a fault. This study aims to implement an intelligent real-time reconfiguration algorithm in the RTDS platform through an optimization technique implemented inside the Real-Time Digital Simulator (RTDS). The simulation results demonstrate the effectiveness of the proposed real-time approach to reconfigure the system under different fault situations. Second, a novel approach to mitigate the effect of the unsymmetrical transient AC faults in the MVDC SPS has been proposed. In this dissertation, the application of combined Static Synchronous Compensator (STATCOM)-Super Conducting Fault Current Limiter (SFCL) to improve the stability of the MVDC SPS during transient faults has been investigated. A Fluid Genetic Algorithm (FGA) optimization algorithm is introduced to design the STATCOM's controller. Moreover, a multi-objective optimization problem has been formulated to find the optimal size of SFCL's impedance. In the proposed scheme, STATCOM can assist the SFCL to keep the vital load terminal voltage close to the normal state in an economic sense. The proposed technique provides an acceptable post-disturbance and postault performance to recover the system to its normal situation over the other alternatives.
URI
https://hdl.handle.net/11668/17548
Recommended Citation
Laktarashani, Maziar Babaei, "Toward Fault Adaptive Power Systems in Electric Ships" (2018). Theses and Dissertations. 4752.
https://scholarsjunction.msstate.edu/td/4752