Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Tian, Wenmeng (Meg)
Committee Member
Babski-Reeves, Kari
Committee Member
Smith, Brian
Committee Member
Marufuzzaman, Mohammad
Date of Degree
11-25-2020
Original embargo terms
Visible to MSU only for 1 year
Document Type
Dissertation - Open Access
Major
Industrial and Systems Engineering
Degree Name
Doctor of Philosophy
Degree Name
Doctor of Philosophy (Ph.D)
College
James Worth Bagley College of Engineering
College
James Worth Bagley College of Engineering
Department
Department of Industrial and Systems Engineering
Department
Department of Industrial and Systems Engineering
Abstract
Scene perception and traversability analysis are real challenges for autonomous driving systems. In the context of off-road autonomy, there are additional challenges due to the unstructured environments and the existence of various vegetation types. It is necessary for the Autonomous Ground Vehicles (AGVs) to be able to identify obstacles and load-bearing surfaces in the terrain to ensure a safe navigation (McDaniel et al. 2012). The presence of vegetation in off-road autonomy applications presents unique challenges for scene understanding: 1) understory vegetation makes it difficult to detect obstacles or to identify load-bearing surfaces; and 2) trees are usually regarded as obstacles even though only trunks of the trees pose collision risk in navigation. The overarching goal of this dissertation was to study traversability analysis in unstructured forested terrains for off-road autonomy using LIDAR data. More specifically, to address the aforementioned challenges, this dissertation studied the impacts of the understory vegetation density on the solid obstacle detection performance of the off-road autonomous systems. By leveraging a physics-based autonomous driving simulator, a classification-based machine learning framework was proposed for obstacle detection based on point cloud data captured by LIDAR. Features were extracted based on a cumulative approach meaning that information related to each feature was updated at each timeframe when new data was collected by LIDAR. It was concluded that the increase in the density of understory vegetation adversely affected the classification performance in correctly detecting solid obstacles. Additionally, a regression-based framework was proposed for estimating the understory vegetation density for safe path planning purposes according to which the traversabilty risk level was regarded as a function of estimated density. Thus, the denser the predicted density of an area, the higher the risk of collision if the AGV traversed through that area. Finally, for the trees in the terrain, the dissertation investigated statistical features that can be used in machine learning algorithms to differentiate trees from solid obstacles in the context of forested off-road scenes. Using the proposed extracted features, the classification algorithm was able to generate high precision results for differentiating trees from solid obstacles. Such differentiation can result in more optimized path planning in off-road applications.
URI
https://hdl.handle.net/11668/18478
Recommended Citation
Foroutan, Morteza, "Traversability analysis in unstructured forested terrains for off-road autonomy using LIDAR data" (2020). Theses and Dissertations. 4785.
https://scholarsjunction.msstate.edu/td/4785