Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Shamsaei, Nima
Committee Member
Thompson, Scott M.
Committee Member
Daniewicz, Steven R.
Date of Degree
12-9-2016
Original embargo terms
MSU Only Indefinitely
Document Type
Graduate Thesis - Campus Access Only
Major
Mechanical Engineering
Degree Name
Master of Science
College
James Worth Bagley College of Engineering
Department
Department of Mechanical Engineering
Abstract
The trustworthiness of AM metallic materials is not well characterized. Therefore, fatigue models that consider the unique microstructure and porosity inherent to AM parts are needed. Herein, a microstructure-based fatigue model is calibrated for use in predicting fatigue life of additively manufactured (AM) Ti-6Al-4V. Various Ti-6Al-4V samples, with variations in porosity, were fabricated using Laser Engineered Net Shaping (LENS), a Direct Laser Deposition method. LENS samples in the as-built and heat treated conditions, together with wrought Ti-6Al-4V samples, underwent fatigue testing, as well as microstructure and fractographic inspection. The collected microstructure/defect statistics were used for calibrating a microstructure-sensitive fatigue model. LENS Ti-6Al-4V sample fatigue lives were found to be consistently less than those of the wrought Ti-6Al-4V samples, due to the presence of pores/defects within the LENS material. Results further indicate that fatigue life predictions from the employed model were in close agreement with experimental results.
URI
https://hdl.handle.net/11668/19251
Recommended Citation
Torries, Brian Anthony, "Utilization of a Microstructure Sensitive Fatigue Model for Additively Manufactured Ti-6Al-4V" (2016). Theses and Dissertations. 4919.
https://scholarsjunction.msstate.edu/td/4919