Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Whittington, Wilburn
Committee Member
Yarahmadian, Shantia
Committee Member
Rhee, Hongjoo
Committee Member
El Kadiri, Haitham
Committee Member
Subhash, Ghatu
Date of Degree
4-30-2021
Original embargo terms
Visible to MSU only for 1 year
Document Type
Dissertation - Open Access
Major
Engineering
Degree Name
Doctor of Philosophy
Degree Name
Doctor of Philosophy (Ph.D)
College
James Worth Bagley College of Engineering
College
James Worth Bagley College of Engineering
Department
Department of Mechanical Engineering
Department
Department of Mechanical Engineering
Abstract
This work analyzes the design and implementation of waveguides used to measure stress waves in solid mechanics via explicit finite element analysis and experimentation. Many areas of physics use waveguides where control of timing, location, or frequency of waves is imperative to functionality of a system. Split Hopkinson pressure bars (Kolsky bars) traditionally utilize straight waveguides during testing. Prior research produced the first bent wave guide for use in such an application, the coaxially embedded serpentine bar (CESB). Explicit finite element analysis (FEA) provides a modeling approach to understand the effects of pass and joint geometry and boundary conditions on the functionality of solid-mechanic waveguides like the CESB. FEA and experimentation also contrasts the functionality of welded joints and threaded joints. Novel waveguide designs that do not feature tubes are also detailed for use in dynamic mechanical testing and dynamic hardness indentation experiments. These designs feature acoustic lengths up to two orders of magnitude greater than their physical lengths.
Sponsorship
Army Research Lab
Recommended Citation
Leonard, Richard Young III, "Compact Stress Waveguides in Solid Mechanics" (2021). Theses and Dissertations. 5118.
https://scholarsjunction.msstate.edu/td/5118