Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Hanson, Larry
Committee Member
Wan, Xiu-Feng (Henry)
Committee Member
King, Jonas
Committee Member
Tao, Yizhi Jane
Date of Degree
4-30-2021
Original embargo terms
Complete embargo for 1 year
Document Type
Dissertation - Open Access
Major
Veterinary Medical Science
Degree Name
Doctor of Philosophy
College
College of Veterinary Medicine
Department
Department of Basic Sciences
Abstract
The ribonucleoprotein (RNP) complex of influenza A viruses (IAVs) is responsible for replication and transcription of viral RNA and genome, respectively. Mutations in the RNP genes have been identified to play a role in host adaptations and tissue tropisms of IAVs, and compatibility among these genes has been implicated as an important factor for facilitating reassortment of IAVs. Furthermore, mutations and reassortment can drastically impact the polymerase activities of the RNP complex in vitro. However, the simultaneous role both of these mechanisms play in enhancing or diminishing polymerase activities of divergent IAVs remains opaque, and therefore, a greater understanding of how mutations and reassortment of these genes pose potential pandemic risk. In this project, a minigenome assay was used to quantify polymerase activities of various RNP complexes (i.e., complexes containing mutations, reassortant complexes with genes from divergent IAV subtypes; etc.), and applied to a machine learning model to identify genetic features within the RNP complex that are associated with polymerase activities. Applying diverse genotypic and phenotypic data from IAV RNP complexes to a machine learning model has enhanced our understanding of various mechanisms this complex of proteins uses to facilitate viral replication and evolution of IAV.
Recommended Citation
Waters, Kaitlyn, "The influenza ribonucleoprotein complex and its impact on viral replication and evolution" (2021). Theses and Dissertations. 5162.
https://scholarsjunction.msstate.edu/td/5162