Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Qingmin Meng

Committee Member

Jenny Q. Du

Committee Member

Qingmin Meng

Committee Member

Jenny Q. Du

Committee Member

Shrinidhi Ambinakudige, Jia Yang

Date of Degree

8-6-2021

Original embargo terms

Worldwide

Document Type

Dissertation - Open Access

Major

Geospatial science

Degree Name

Doctor of Philosophy

College

College of Arts and Sciences

Department

Department of Geosciences

Abstract

Agriculture and food security are interlinked. New technologies and instruments are making the agricultural system easy to operate and increasing the food production. Remote sensing technology is widely used as a non-destructive method for crop growth monitoring, climate analysis, and forecasting crop yield. The objectives of this study are to (1) monitor crop growth remotely, (2) identify climate impacts on crop yield, and (3) forecasting crop yield. This study proposed methods to improve crop growth monitoring and yield predictions by using remote sensing technology. In this study, we developed crop vegetative growth metrics (VGM) from the MODIS (Moderate Resolution Imaging Spectroradiometer) 250m NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) data. We developed 19 NDVI and EVI based VGM metrics for soybean crop from a time series of 2000 to 2018, but the methods are applicable to other crops as well. We found VGMmax, VGM70, VGM85, VGM98T are about 95% crop yield predictable. However, these metrics are independent of climatic events. We modelled the climatic impacts on soybean crop from the time series data from1980-2019 collected from NOAA's National Climatic Data Center (NCDC). Therefore, we estimated the impacts of increase and decrease of temperature (maximum, mean, and minimum) and precipitation (average) pattern on crop yields which will be helpful to monitor climate change impacts on crop production. Lastly, we made crop yield forecasting statistical model across different climatic regions in USA using Google Earth Engine. We used remotely sensed MODIS Terra surface reflectance 8-day global 250m data to calculate VGM metrics (e.g. VGM70, VGM85, VGM98T, VGM120, VGMmean, and VGMmax), MODIS Terra land surface temperature and Emissivity 8-Day data for average day-time and night-time temperature and CHIRPS (Climate Hazards Group Infra-red Precipitation with station data) data for precipitation, from a time series data of 2000-2019. Our predicted models showed a NMPE (Normalized Mean Prediction error) with in a range of -0.002 to 0.007. These models will be helpful to get an overall estimate of crop production and aid in national agricultural strategic planning. Overall, this study will benefit farmers, researchers, and management system of U.S. Department of Agriculture (USDA).

Share

COinS