Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Gurbuz, Ali
Committee Member
Ball, John E.
Committee Member
Kurum, Mehmet
Committee Member
Price, Stanton R.
Date of Degree
12-10-2021
Document Type
Graduate Thesis - Open Access
Major
Electrical and Computer Engineering
Degree Name
Master of Science (M.S.)
College
James Worth Bagley College of Engineering
Department
Department of Electrical and Computer Engineering
Abstract
Processing hyperspectral image data can be computationally expensive and difficult to employ for real-time applications due to its extensive spatial and spectral information. Further, applications in which computational resources may be limited can be hindered by the volume of data that is common with airborne hyperspectral image data. This paper proposes utilizing band selection to down-select the number of spectral bands to consider for a given classification task such that classification can be done at the edge. Specifically, we consider the following state of the art band selection techniques: Fast Volume-Gradient-based Band Selection (VGBS), Improved Sparse Subspace Clustering (ISSC), Maximum-Variance Principal Component Analysis (MVPCA), and Normalized Cut Optimal Clustering MVPCA (NC-OC-MVPCA), to investigate their feasibility at identifying discriminative bands such that classification performance is not drastically hindered. This would greatly benefit applications where time-sensitive solutions are needed to ensure optimal outcomes. In this research, an NVIDIA AGX Xavier module is used as the edge device to run trained models on as a simulated deployed unmanned aerial system. Performance of the proposed approach is measured in terms of classification accuracy and run time.
Recommended Citation
Butler, Samantha, "Evaluation of hyperspectral band selection techniques for real-time applications" (2021). Theses and Dissertations. 5319.
https://scholarsjunction.msstate.edu/td/5319