Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Jaradat, Ra'ed
Committee Member
Hamilton, Michael A.
Committee Member
Ma, Junfeng
Committee Member
Wang, Haifeng
Date of Degree
12-10-2021
Document Type
Dissertation - Open Access
Major
Industrial and Systems Engineering
Degree Name
Doctor of Philosophy (Ph.D)
College
James Worth Bagley College of Engineering
Department
Department of Industrial and Systems Engineering
Abstract
This dissertation develops virtual reality modules to capture individuals’ learning abilities and systems thinking skills in dynamic environments. In the first chapter, an immersive queuing theory teaching module is developed using virtual reality technology. The objective of the study is to present systems engineering concepts in a more sophisticated environment and measure students learning abilities. Furthermore, the study explores the performance gaps between male and female students in manufacturing systems concepts. To investigate the gender biases toward the performance of developed VR module, three efficacy measures (simulation sickness questionnaire, systems usability scale, and presence questionnaire) and two effectiveness measures (NASA TLX assessment and post-motivation questionnaire) were used. The second and third chapter aims to assess individuals’ systems thinking skills when they engage in complex multidimensional problems. A modern complex system comprises many interrelated subsystems and various dynamic attributes. Understanding and handling large complex problems requires holistic critical thinkers in modern workplaces. Systems Thinking (ST) is an interdisciplinary domain that offers different ways to better understand the behavior and structure of a complex system. The developed scenario-based instrument measures students’ cognitive tendency for complexity, change, and interaction when making decisions in a turbulent environment. The proposed complex systems scenarios are developed based on an established systems thinking instrument that can measure important aspects of systems thinking skills. The systems scenarios are built in a virtual environment that facilitate students to react to real-world situations and make decisions. The construct validity of the VR scenarios is assessed by comparing the high systematic scores between ST instrument and developed VR scenarios. Furthermore, the efficacy of the VR scenarios is investigated using the simulation sickness questionnaire, systems usability scale, presence questionnaire, and NASA TLX assessment.
Recommended Citation
Dayarathna, Vidanelage L., "The development of authentic virtual reality scenarios to measure individuals’ level of systems thinking skills and learning abilities" (2021). Theses and Dissertations. 5355.
https://scholarsjunction.msstate.edu/td/5355
Included in
Applied Statistics Commons, Categorical Data Analysis Commons, Ergonomics Commons, Industrial Engineering Commons, Systems Engineering Commons