Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Whittington, Wilburn

Committee Member

Liu, Yucheng

Committee Member

Stone, Tonya W.

Committee Member

Knizley, Alta

Date of Degree

12-10-2021

Document Type

Dissertation - Open Access

Major

Mechanical Engineering

Degree Name

Doctor of Philosophy (Ph.D)

College

James Worth Bagley College of Engineering

Department

Department of Mechanical Engineering

Abstract

BEVs are a critical pathway towards achieving energy independence and meeting greenhouse and pollutant gas reduction goals in the current and future transportation sector [1]. Automotive manufacturers are increasingly investing in the refinement of electric vehicles as they are becoming an increasingly popular response to the global need for reduced transportation emissions. Therefore, there is a desire to extract the most fuel economy from a vehicle as possible. Some areas that manufacturers spend much effort on include minimizing the vehicle’s mass, body drag coefficient, and drag within the powertrain. When these values are defined or unchangeable, interest is driven to other areas such as investigating the control strategy of the powertrain. If two or more electric motors are present in an electric vehicle, Torque Vectoring (TV) strategies are an option to further increase the fuel economy of electric vehicles. Most of the torque vectoring strategies in literature focus exclusively on enhancing the vehicle stability and dynamics with few approaches that consider efficiency or energy consumption. The limited research on TV that addresses system efficiency have been done on a small number of vehicle architectures, such as four independent motors, and are distributing torque front/rear instead of left/right which would not induce any yaw moment. The proposed research aims to address these deficiencies in the current literature. First, by implementing an efficiency-optimized TV strategy for a rear-wheel drive, dual-motor vehicle under straight-line driving as would be experienced in during the EPA drive cycle tests. Second, by characterizing the yaw moment and implementing strategies to mitigate any undesired yaw motion. The application of the proposed research directly impacts dual-motor architectures in a way that improves overall efficiency which also drives an increase in fuel economy. Increased fuel economy increases the range of electric vehicles and reduces the energy demand from an electrical source that may be of non-renewable origin such as coal.

Share

COinS