Theses and Dissertations

ORCID

https://orcid.org/0000-0002-3800-8345

Advisor

Cho, Heejin

Committee Member

Knizley, Alta

Committee Member

Singh, Prashant

Date of Degree

5-13-2022

Document Type

Graduate Thesis - Open Access

Major

Mechanical Engineering

Degree Name

Master of Science (M.S.)

College

James Worth Bagley College of Engineering

Department

Department of Mechanical Engineering

Abstract

Air filters are routinely used to remove various aerosols ranging from radioactive particles to airborne viruses. The overall performance of a filter may be simplified to consider only two main performance characteristics: 1) the efficiency at which particles are removed by the filter, and 2) the filter’s resistance to air flow. Per the DOE Nuclear Air Cleaning Handbook, HEPA filters require a minimum filter efficiency of 99.97% for particles 0.3 micrometers in diameter. Understanding how filters will perform with respect to time and mass loading is essential towards building more robust filters that operate more efficiently and safely. Analyzing the mechanics of the filter media will provide better direction towards design improvement by exploring the relationship between the pressure drop and loaded particle mass. This work summarizes the design, construction, and characterization of a testing apparatus intended to perform penetration and loading testing on various test medias with selected aerosols.

Share

COinS