Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Smith, Dennis W., Jr.
Committee Member
Pittman, Charles U., Jr.
Committee Member
Kundu, Santanu
Committee Member
Scott, Colleen
Committee Member
Montiel-Palma, Vicky
Other Advisors or Committee Members
Cui, Xin
Date of Degree
5-13-2022
Document Type
Dissertation - Open Access
Major
Chemistry
Degree Name
Doctor of Philosophy (Ph.D)
College
College of Arts and Sciences
Department
Department of Chemistry
Abstract
Tailored fluoropolymers remain the leading choice for a wide variety of advanced high-performance applications, including electronic/optical and energy conversion, owing to their unique blend of complementary high-performance properties. Amorphous semi-fluorinated polymers exhibit improved solubility and melt processability when compared to traditional perfluoropolymers. A leading class of semi-fluorinated aryl ether polymers includes perfluorocyclobutyl (PFCB), perfluorocycloalkenyl (PFCA), and fluoroarylene vinylene ether (FAVE) polymers. Monomers containing aromatic trifluorovinyl ethers (TFVE) are used to synthesize PFCB polymers via radical-mediated [2+2] cyclodimerization. On the other hand, FAVE and PFCA polymers are polymerized via base-mediated nucleophilic addition/elimination of bisphenols with TFVE monomers and decafluorocyclohexene respectively. The use of different monomer cores (aromatic, aliphatic, contorted, and renewable) should help to develop general structure/property relationships for this versatile and expanding approach to semi-fluorinated aryl ether polymers. The enchainment of polycyclic aromatic hydrocarbon (PAH) cores with functional fluorocarbon groups (or segments) recently afforded a new class of semi- fluorinated polymers in the continuing quest for novel organic materials for potential applications in optoelectronic, gas-separation, and advanced composites. Chapter 2 details the incorporation of commercially available acenaphthenequinone was achieved to afford PFCB aryl ether polymers with excellent solubility, high thermal stability, and film-forming capability. Chapter 3 represents base-promoted nucleophilic addition/elimination of commercial bisphenols with TFVE-triphenylene monomers affording FAVE aryl ether polymers possessing excellent solution processability, high thermal stability and photostability. In addition, triphenylene-enchained FAVE polymers exhibit extreme thermal-oxidative photostability and emit blue light after heating in air at 250 °C for 24 h. Further, time-dependent density functional theory (TD-DFT) computations were performed to understand electronic polymer structures. In one case, post-polymerization Scholl coupling converted the central triphenylene core to afford a hexabenzocoronene containing semi-fluorinated polymer with new optoelectronic properties. Chapter 4 demonstrates synthesis and characterization of renewable semi-fluorinated polymers obtained using aliphatic diol isosorbide. This renewable diol readily polymerizes with bis-TFVE derivatives of bisphenol A and 6F to provide high molecular weight thermoplastics exhibiting excellent solubility and tough, transparent film-forming capability. Finally, Chapter 5 presents synthesis of TFVE enchained corannulene which gave blue-light emission and outstanding processability. Synthesis and characterization, including the new materials' optical, thermal, and electronic properties, is presented.
Recommended Citation
Shelar, Ketki Eknath, "A modular synthesis of processable and thermally stable semi-fluorinated aryl ether polymers via step-growth polymerization of fluoroalkenes" (2022). Theses and Dissertations. 5477.
https://scholarsjunction.msstate.edu/td/5477
Included in
Materials Chemistry Commons, Organic Chemistry Commons, Other Materials Science and Engineering Commons, Polymer Chemistry Commons, Structural Materials Commons