Theses and Dissertations
Issuing Body
Mississippi State University
Advisor
Popescu, George V.
Committee Member
Hoffmann, Federico G.
Committee Member
Peterson, Daniel G.
Date of Degree
8-9-2022
Document Type
Graduate Thesis - Open Access
Major
Computational Biology
Degree Name
Master of Science (M.S.)
College
James Worth Bagley College of Engineering
Department
Department of Computer Science and Engineering
Abstract
Multi -omics data analysis and integration facilitates hypothesis building toward an understanding of genes and pathway responses driven by environments. Methods designed to estimate and analyze gene expression, with regard to treatments or conditions, can be leveraged to understand gene-level responses in the cell. However, genes often interact and signal within larger structures such as pathways and networks. Complex studies guided toward describing dynamic genetic pathways and networks require algorithms or methods designed for inference based on gene interactions and related topologies. Classes of algorithms and methods may be integrated into generalized workflows for comparative genomics studies, as multi -omics data can be standardized between contact points in various software applications. Further, network inference or network comparison algorithmic designs may involve interchangeable operations given the structure of their implementations. Network comparison and inference methods can also guide transfer-of-knowledge between model organisms and those with less knowledge base.
Recommended Citation
Ferrell, Drew, "Methods and tools to improve performance of plant genome analysis" (2022). Theses and Dissertations. 5552.
https://scholarsjunction.msstate.edu/td/5552
Included in
Bioinformatics Commons, Computational Biology Commons, Genomics Commons, Systems Biology Commons