Theses and Dissertations
ORCID
Blake C Stewart: https://orcid.org/0000-0003-3604-7866
Issuing Body
Mississippi State University
Advisor
Rhee, Hongjoo
Committee Member
Doude, Haley R.
Committee Member
Abney, Morgan B.
Committee Member
Mujahid, Shiraz
Date of Degree
8-9-2022
Document Type
Dissertation - Open Access
Major
Mechanical Engineering
Degree Name
Doctor of Philosophy (Ph.D)
College
James Worth Bagley College of Engineering
Department
Department of Mechanical Engineering
Abstract
As research continues for the habitation of the Lunar and Martian surfaces, the need for materials for construction of structural parts, mechanical components, and tools remains as a major milestone. The use of in-situ resource utilization (ISRU) techniques is critical due to the financial, physical, and logistical burdens of sending supplies beyond low-Earth orbit. The Bosch process is currently in development as a life support system at the National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) to regenerate oxygen (O2) from metabolic carbon dioxide (CO2) with the byproduct of elemental carbon (C). The Bosch process presents a possible way of regenerating O2 without the disposal of hydrogen (H2) like the Sabatier. Ionic liquids (ILs) are also studied at MSFC as a means to harvest metallic elements from regolith oxides and meteorites. IL technology provides an energy efficient method of extracting critical manufacturing materials, such as iron (Fe) that could be used for ferrous alloy production. This dissertation seeks to explore the use of Bosch C and IL-Fe for ferrous alloy production through a series of studies. These studies included individually using Bosch C with commercial elements to cast low carbon steel and gray cast iron, investigating as-produced IL-Fe in a laser-based powder bed fusion (PBF-LB) printer to determine IL-Fe metallurgical characteristics, using the IL-Fe composition to design a ductile iron (DI) alloy of similar performance to a commercially available DI alloy, and lastly, refining this DI alloy to produce a DI alloy more representative of an alloy producible from IL-Fe and Bosch byproduct C in a Martian environment. The results presented here suggest that with advances in production rate and control of IL-Fe oxidation, and by providing a sufficient energy grid to operate equipment, a range of high quality DI materials could be manufactured with IL and Bosch process ISRU feedstocks.
Sponsorship
NASA Marshall Space Flight Center, Center for Advanced Vehicular Systems
Recommended Citation
Stewart, Blake C., "Ferrous alloy manufacturing for the Martian surface through in-situ resource utilization with ionic liquids harvested iron and Bosch process carbon" (2022). Theses and Dissertations. 5582.
https://scholarsjunction.msstate.edu/td/5582