Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Hendrix, C. LaShan

Committee Member

Jaffe, Michael

Committee Member

To, Filip Suminto

Committee Member

Elder, Steven H.

Date of Degree

8-8-2023

Document Type

Graduate Thesis - Open Access

Major

Biomedical Engineering

Degree Name

Master of Science (M.S.)

College

James Worth Bagley College of Engineering

Department

Department of Agricultural and Biological Engineering

Abstract

Cardiovascular disease is a significant health crisis, representing 32% of deaths worldwide in 2019. Vascular calcification (VC), a major contributor to cardiovascular disease, is a regulated biomineralization process whose exact mechanisms are unknown. Additionally, vascular smooth muscle cells (VSMCs) significantly contribute to VC by undergoing a phenotypic switch and differentiating into osteoblast-like cells. When factors like hypertension cause disturbed laminar flow in the body’s vasculature, the mechanical stress promotes the phenotypic switch and calcification of VSMCs via mechanotransduction. VC is also induced by the Wnt pathway, which is activated via mineral imbalance and mechanical stimulation. However, the exact mechanisms behind mechanotransduction in relation to VC, Wnt, and VSMC differentiation are unknown. If uncovered, knowledge of the mechanisms may be used to create effective treatments for VC.

Share

COinS