Theses and Dissertations

Issuing Body

Mississippi State University

Advisor

Elder, Steven H.

Committee Member

Priddy, Lauren B.

Committee Member

Simpson, Chartrisa LaShan

Committee Member

Cade, Jeb C.

Date of Degree

12-8-2017

Document Type

Graduate Thesis - Open Access

Major

Biomedical Engineering

Degree Name

Master of Science

College

James Worth Bagley College of Engineering

Department

Department of Agricultural and Biological Engineering

Abstract

Meniscus damage is very common and eventually leads to the deterioration of the entire knee joint. The goal of this study was to provide evidence that supports a proof of concept for a decellularized porcine meniscal xenograft to be used as a treatment method for meniscal injury as a partial or full meniscus transplant. This research adapted an antigen removal protocol for articular cartilage to produce decellularized xenografts in 48% of the time and with no significant difference in DNA content as other current methods. DNA and GAG content, and the compression moduli were significantly lower in the xenograft than the control, but collagen content remained the same. Tensile modulus and ultimate tensile stress were significantly higher for the xenograft than the control. Crosslinking analysis was performed and 0.2% genipin was found to have a significantly higher degree of crosslinking than the rest.

URI

https://hdl.handle.net/11668/19582

Share

COinS